SOAL PILIHAN GANDA DAN PENYELESAIAN UNTUK PERTIDAKSAMAAN EKSPONEN

Nama : ANGGUN INDAH SARI DARMAYANTI

Kelas : X MIPA 3

Absen:9



1.  Nilai x yang memenuhi pertidaksamaan 52x - 6.5x+1 + 125 > 0, x ∈ R adalah ...

A.   1 < x < 2
B.   5 < x < 25
C.   x < -1  atau  x > 2
D.   x < 1  atau  x > 2
E.   x < 5  atau  x > 25

Pembahasan :
52x  -  6.5x+1  +  125  >  0
(5x)2  -  6.5x.51  +  125  >  0
(5x)2  -  30(5x)  +  125  >  0

Misalkan y = 5x, pertidaksamaan diatas menjadi
y2 - 30y + 125 > 0

Pembuat nol :
y2 - 30y + 125 = 0
(y - 5)(y - 25) = 0
y = 5  atau  y = 25

Dengan uji garis bilangan diperoleh
y < 5  atau  y > 25

Karena y = 5x, maka penyelesaiannya menjadi
5x < 5  atau  5x > 25
5x < 51  atau  5x > 52
x < 1  atau  x > 2

Jawaban : D


2. Nilai x yang memenuhi pertidaksamaan 3.4x - 7.2x + 2 > 0 adalah ...
A.   x < -1  atau x > 2log 3
B.   x < 2log 1/3  atau  x > 1
C.   2log 1/3 < x < 1
D.   x < 1  atau  x > 2log 1/3
E.   1 < x < 2log 1/3

Pembahasan :
3.4x  -  7.2x  +  2  >  0
3(2x)2  -  7(2x)  +  2  >  0

Misalkan y = 2x, pertidaksamaan diatas menjadi
3y2 - 7y + 2 > 0

Pembuat nol :
3y2  - 7y + 2 = 0
(3y - 1)(y - 2) = 0
y = 1/3  atau  y = 2

Dengan uji garis bilangan diperoleh
y < 1/3  atau  y > 2

Karena y = 2x, maka
2x < 1/3             atau  2x > 2
2x < 22log1/3  atau  2x > 21
x < 2log 1/3   atau  x > 1

Jadi, nilai x yang memenuhi adalah
x < 2log 1/3  atau  x > 1

Jawaban : B



3. Nilai x yang memenuhi pertidaksamaan 32x+1 + 9 − 28 ∙ 3x > 0, x ∈ R adalah ….

A.   x > −1 atau x > 2
B.   x < −1 atau x < 2
C.   x < 1 atau x > 2
D.   x < −1 atau x > 2
E.   x > −1 atau x < −2

Pembahasan

Langkah pertama, kita pecah bilangan berpangkat 32x+1 menjadi 32x ∙ 31.

   32x+1 + 9 − 28 ∙ 3x > 0
32x ∙ 31 + 9 − 28 ∙ 3x > 0

Misalkan p = 3x kemudian kita urutkan sehingga menjadi:

 3p2 − 28p + 9 > 0
(3p − 1)(p − 9) > 0

Karena tanda pertidaksamaannya ‘>’ maka penyelesaiannya berada di sebelah kiri 1/3 atau di sebelah kanan 9.

 p < 1/3    atau    p > 9
3x < 3−1   atau   3x > 32
  x < −1    atau     x > 2

Jadi, nilai x yang memenuhi pertidaksamaan eksponen di atas adalah opsi (D).


4. Himpunan penyelesaian dari 9x − 54 > 3x+1 adalah ….

A.   {xx > 9, x ∈ R}
B.   {xx < −3, x ∈ R}
C.   {xx > 4, x ∈ R}
D.   {xx < −6, x ∈ R}
E.   {xx > 2, x ∈ R}

Pembahasan

Langkah pertama kita pindah ruas sehingga ruas kanan menjadi nol

9x − 3x+1 − 54 > 0

Selanjutnya pangkat dari 3 kita pecah dengan rumus am+n = am ∙ an.

9x − 3x . 31 − 54 > 0

Misalkan p = 3x sehingga 9x = p2.

 p2 − 3p − 54 > 0
(p + 6)(p − 9) > 0

Karena tanda pertidaksamaannya ‘>’ maka penyelesaiannya berada di sebelah kiri −6 atau di sebelah kanan 9.

 p < −6   atau    p > 9
3x < −6   atau   3x > 9

Penyelesaian 3x < −6 tidak memenuhi karena hasil perpangkatan tidak mungkin negatif. Sekarang kita lanjutkan untuk 3x > 9.

3x > 9
3x > 32
  x > 2

Jadi, himpunan penyelesaian yang memenuhi pertidaksamaan eksponen di atas adalah opsi (E).


5. Himpunan penyelesaian dari 22x − 7 ∙ 2x > 8 adalah ….

A.   {xx < −1, x ∈ R}
B.   {xx < −2, x ∈ R}
C.   {xx > 3, x ∈ R}
D.   {xx > 4, x ∈ R}
E.   {xx > 8, x ∈ R}

Pembahasan

Misalkan p = 2x sehingga 22x = p2.

   22x − 7 ∙ 2x > 8
   p2 − 7p − 8 > 0
(p + 1)(p − 8) > 0

Karena tanda pertidaksamaannya ‘>’ maka penyelesaiannya berada di sebelah kiri −1 atau di sebelah kanan 8.

 p < −1    atau    p > 8
2x < −1    atau   2x > 8

Penyelesaian 2x < −1 tidak memenuhi karena hasil perpangkatan tidak mungkin negatif. Sehingga kita tinggal menyelesaikan 2x > 8.

2x > 8
2x > 23
  x > 3

Jadi, himpunan penyelesaian pertidaksamaan eksponen tersebut adalah opsi (C





Komentar

Postingan populer dari blog ini

DALIL SEGMEN GARIS PADA MASALAH GEOMETRI DAN CONTOH SOALNYA

masalah kontekstual yang berhubungan dengan vektor

Eksponen dan sifat nya